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Abstract

Sobolev orthogonal polynomials with respect to measures supported on subsets of the
complex plane are considered. The connection between the following properties is studied: the
multiplication operator .#p(z) = zp(z) defined on the space P of algebraic polynomials with
complex coefficients is bounded with respect to the norm defined by the Sobolev inner
product, the supports of the measures are compact and the zeros of the orthogonal
polynomials lie in a compact subset of the complex plane. In particular, we prove that the
boundedness of the multiplication operator .# always implies the compactness of the
supports.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

It is well known that inner products defined on the linear space of polynomials P
as

o =/p6'1du, (1)
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where u is a positive Borel measure with supp u<R are characterized for the
symmetry of the multiplication operator

M:P->P,

M (p) = zp(2); (2)

that is, an inner product defined on P satisfies {zp(z),q(z) > = {p(z),zq(z) ) for all
p,qeP, if and only if {, ) is defined as in (1) where u is a positive measure with
supp u<R.

The fact that the multiplication operator is symmetric for {, > has a number of
important consequences. The three-term recurrence relation for the sequence of
orthonormal polynomials with respect to {, > is the most important (they are, in
fact, equivalent properties, see [2, Introd.]). Another important consequence is also
the equivalence of the following three properties:

(i) The multiplication operator .#p(z) = zp(z) is bounded with respect to the norm
defined by the inner product.
(i1) The zeros of the orthogonal polynomials with respect to the inner product lie in
a compact set.
(iii)) The support of the measure u is compact.

Actually, (i) always implies (ii) (see [4]), and (i) is equivalent to (iii) also for the more
general case of inner products as in (1) where p is now a measure with supp u<C.
But even in that case, some examples can be easily found showing that (ii) does not
imply (iii) (see Example 1 in the next section).

The aim of this paper is to explore the connection between the above properties (i),
(ii) and (ii1) for Sobolev inner products.

Let u be a finite positive Borel measure supported in a subset of the complex plane.

Let W = (w; ,/')z]‘,\;:o be a matrix of integrable functions with respect to u which it is
positive semidefinite p a.e., i.e, W(z) = (Wi:i(z))z':o is positive semidefinite for any
complex number z except for at most a set of u measure zero. We consider the
following Sobolev inner product defined on the space P of algebraic polynomials

with complex coefficients

q(2)
N 702
vy =3 [6@r@ M owe| 1w, o)
k=0 .
)

As usual, /% denotes the kth derivative of a function f and the norm of a
polynomial pe P with respect to the Sobolev inner product is just ||p|| = v/{p,p>.

We will assume that supp p = Uf(vzo supp wix contains infinitely many points
and that W(¢) is positive definite for at least an infinite subset of supp u.
Therefore, a unique sequence of monic orthogonal polynomials, which
will be denoted by (g,),, is associated with (3). For each neN, the degree of g,
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is exactly n. The more studied Sobolev inner product appears when the matrix
W is taken to be diagonal: W = diag{wy, ..., wy}; then the Sobolev inner product

reduces to
N

(p.g) = Z / (2)g® @)wi(z) du(z) = <p™ 4™ > 1, a0 (4)

k=0

with the usual Sobolev norm

1/2
Pl = <Z ™ ,) . where ||p|[}, :/|P(Z)|2Wk du(z), k=0,...,N.
(5)

Sobolev orthogonal polynomials have attracted much attention in the past decade
(especially the diagonal case). Many papers on the subject deal with the algebraic
aspects of the theory. In this direction, we call attention to the recent papers [4,5]
which deal with the zero distribution of Sobolev orthogonal polynomials assuming
that u has compact support, and [3] for zero location of nonstandard orthogonal
polynomials including that of Sobolev type.

The key concept to establish the boundedness of the multiplication operator for
Sobolev inner product is that of the sequentially dominated measures which was
introduced by Lopez and Pijeira in [5]:

Definition 1. Given a measure p with support in the complex plane and nonnegative
Sfunctions wee L' (1), k =0, ..., N, the measures p;, = wy du, k =0, ..., N, are said to
be sequentially dominated if they satisfy wi/wir_1€L*(p), k=1,...,N

The property of sequential domination for measures with compact support always
implies the boundedness of the multiplication operator for the Sobolev inner product
defined by those measures [4, Section 2]. This result was originally given in [5,
Theorem 1] for the case supp < R; moreover Rodriguez gave in [6] the following
characterization for the boundedness of the multiplication operator for Sobolev
inner products:

Proposition 1 (Rodriguez [6, Theorem 4.1]). Let {, > be the Sobolev inner product
defined by (4) where p has compact support. The multiplication operator is bounded for
this inner product if and only if the norm (5) is equivalent to the norm defined by a
family of measures [ = widu, k=0,...,N, which is sequentially dominated.
Moreover, in this case we can take the nonnegative functions WwieL'(u) to be Wy =
Wi + Wil + -0 + Wy

We prove in this note that the boundedness of any power of the multiplication
operator for a general Sobolev inner product as in (3) always implies the
compactness of the support of the measure (Section 2); we also give some examples
showing that the converse is not true, and that .#> can be bounded and .# not. It
still remains as an open question whether the properties (ii) and (iii) above are also
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equivalent for Sobolev inner products with supp u=R and to prove or disapprove
that (iii) implies (ii) when supp u<C.

An important tool in our research will be the matrix approach presented in [3] for
the location of the zeros of orthogonal polynomials with respect to nonstandard
inner products (see Section 3). Using it, we give the following characterization of
sequentially dominated measures:

Proposition 2. Let p be a positive measure with support in the complex plane and
consider nonnegative functions wieL'(u), k=0, ...,N. Then, the measure p has
compact support and the measures w, =widu, k=0,...,N, are sequentially
dominated if and only if there exists >0 such that the matrix o/ (t) =nW(t) —
LW ()T (¢) is positive semidefinite for u almost every tesupp u, where W =
diag{wy, ..., wy} and

t 1 0 .. 0
0 2 0 0
0 0 '
I'(t)=
t N
0 0 ¢

2. Compactness of the measure’s support

We will now prove that the boundedness of any power of the multiplication
operator for a general Sobolev inner product always implies the compactness of the
measure’s support.

Theorem 1. Let {, ) be the Sobolev inner product defined by (3). If for some k=1,
||| < o0 then \Jp_y supp(wix dp) = {z€C: 2| < |.4%||V*}. (Actually, it is enough
to assume M* bounded on the sequence of monomials (2"),)-

Proof. Notice  that  [|2¥||<||.Z%||"-||z°||, =1, which  implies  that
[14711° <[k | .

Write uy, k =0, ..., N, for the measure dyu;, = wy dp and suppose that there exists
£>0 and ko: 0<ko<N such that py ({z: 2| > |[.%||'* + £})>0; we take ko the
biggest one satisfying that property. Write 4 = {z: |z|> ||.Z*||'/* + ¢} and ay,; =
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kn(kn —1)---(kn—i+1),i=1, ..., N; hence,

|45\ C= || = /(Zk",(zk”)', s (F MW ()

- _ o ZN—]
— / |2PE N N g2V )W (2) | D du(z)

Ok n,N
~
2/A|Z|2(kn_N>(ZN,OCk,nAlZN_l,...,O(k,n.N)W(Z) OCk,n‘yl.szl e
Olfe.n,N
> (LA 4 02 [ i ) W)
Z_N A
x m du(z);
Olfe.n,N

from the choice of ko follows that w;(A4) = 0 for i>ky, the last formula gives then

5| C= (||| + 8)2<k"—N>/ (N, o ounig 2N 0,0, L 0) W (2)
A

0
0
S o2 s 1/k 2(kn—N) zN N—ko () o\w
/ak,n,ko(H || +8) yeees 2 Uy ey (Z)
A \%kn ko
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ZN/ka,n,ko

ZN—ko
X 0 du(z). (6)

0
Since for 0<i<ky, the sequence oy /0% k, tends to 0 as n tends to oo, we get that

ZN/ak,n.]q)

N N—k
lim/ < : s, 2V ke 0, ...,0) W(z) = du(z)
o Ja \%nk 0

0)
2(N—k
= [ d,
4
> (|14 )" g ().
Hence, by taking ¢ >0 small enough (6) gives
do?
||%k||2n> kon.ko 2ko(”!%kHl/k -I-S)an,

(P

that is,

2 1/k 26\ "
Co k(LA + 0
(k| e\ fla|P

which is a contradiction because the expression on the right of this inequality tends
to infinity when » tends to infinity. [

As the following example shows, if the support of the measure is not contained in
the real line, the boundedness of the set of zeros of the orthogonal polynomials does
not imply the boundedness of any power of the multiplication operator, even in the
standard case:

Example 1. Consider the Sobolev inner product (4) for N =0, the measure y, =

doks1 %, with 0 = %, where 0 is the Lebesgue measure supported in the circle of
center 0 and radio k, which reduces to the standard product

1 —m
<p,qy :EAP(ZW(Z) d .
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In this case, the corresponding orthonormal polynomials are the monomials
z", n=0. We have that y,(C) = £1%:Zi12&: 1. The support of y, is
unbounded, which according to Theorem 1 implies that any power of the
multiplication operator is unbounded despite the boundedness of the corresponding

set of zeros.

In order to complete Theorem 1, some examples will show that in contrast with the
case of standard orthogonality:

® if u is supported in the real line, neither the compactness of the support of the
measure u in (4) nor the boundedness of the set of zeros of the corresponding
Sobolev orthogonal polynomials imply the boundedness of any power of the
multiplication operator;

® _// can be unbounded and .#* bounded.

Example 2. Consider the Sobolev inner product (4) for N = 1, the measure u =

4+ 01/, where 4 is the Lebesgue measure di = dx with support [%, 1] and the

functions wy(x) = % 4 l](x) and wi(x) = y{1/2;(x), which reduces to the product
2

> = [, PO s+ 0/2010/2). )
52
Proposition 3.3 of [1] shows that the set of zeros of the orthogonal polynomials with
respect to this inner product are bounded.

We now prove that any power of the multiplication operator is unbounded. Take

the sequence of polynomials 1,(x) = ((x —1/2)* —1)", n>=0; they satisfy the
inequalities, 7>0,

<xktn7xktn> = /

1/2

1 1 2k—2 1 2k—-2
X (x = 1/2) = D*dx + K <§) >k? <§> :

and

1

iy > :/ ((x = 1/2)* = 1) dx.
1/2

But |(x — 1/2)* — 1|<1, xe(1/2, 1], hence ((x — 1/2)* — 1)*" tends to 0 on (1/2,1] as

n tends to oo, and so {1,,1,> tends to 0 as n tends to oo; this implies that .#* is not

bounded.

Example 3. We now show another example of Sobolev inner product for which .Z is
not bounded, .#?* is bounded and whose orthogonal polynomials have bounded
zeros. In this case, the measure y; does not reduce to a Dirac delta as in the previous
example: moreover the set supp(y;)\supp(y,) is infinite. Indeed, we take p=
2.+ 09 + 014 + 0_14, where A is now the Lebesgue measure d4 = dx with support

=1, = 1]
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and the functions and wi(x) =

wo(x) = X[fl,f%]u[%,1]\_){71/4,1/4}()6)
A[-1-1/4)u {0} u(1/4,1](¥), which reduces to the product

(P> = / L pa)dx + p(—1/4)a(—1/8) + p(1 /4)a(1/4)
[—1,—§]U[§,l]
+ P O)F(0) + / P70 dx: (8)
S0k

we then have that supp(u;)\supp(yy) = (—=1/2,—-1/4)u{0}u(1/4,1/2). We first
prove that the operator of multiplication by 7 is not bounded for this inner product,
but the operator of multiplication by 7> is however bounded. To do this consider the
inner product {, ), defined as {, >, but removing the point 0 from the support of
wi, that is

<PaCI>2_/[1 » P()g(x)dx + p(~1/4)q(~1/4) + p(1/4)q(1/4)
Sy

1
+/[1 o 1]p’(X)q’(X) dx. ©)

By writing p(¢) = p(1/4) —|—f1/4p x) dx, 1/4<t, we deduce for 1/4<¢<1 that

9

‘ V3
(O <lp(1/4)] + /1/4 ') dx<Ip(1/4)] + 1Pl 2y

analogously, for —1<r< — 1/4

V3
POI<Ip(=1/H] + Pl 21,1/

This gives that

P + XP'|\Lz([f1,71/4]u[1/4,1]> < ||P|\LZ([71,71/4]U[1/4,1}> + ||XP/||L2([71,71/4]u[1/4,1})

_V3

< T(HPHL“([fl,*l/“])

+ Pl q1a0)) + |‘p/||L2([—lﬁ—l/4]u[l/4,l])
V3
2

7
< —-(Ip(=1/4)| + [p(1/4)]) JrZ||P,||142([71,71/4]u[1/4.1])-
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From where it follows that the operator of multiplication by ¢ is bounded for {, »,:
1
{xp,xp)sy = |\XP||iZ([_1,—1/2]u[1/2,1]) +1_6(|P(_1/4)|2 + |P(1/4)|2)
2
+ 4+ P72 21 —1ym o /a0
1
< |\P\|22([71,71/2}u[1/2,1}) 4‘E(|P(—1/4)|2 +1p(1/4)P)
2
V3 V3 7
+ <2|P(—1/4)| + 7[17(1/4” +Z||p/||L2([—I.—l/4]u[]/4.1])

1
< PllZ2 112020 +E(|P(—1/4)|2 +p(1/4)P)
3 , 3 , 49,
2p(=1/4)P +2p(1 /)] + =2
+3(Fp1E P/ + Tl

147
< 76(||p||2LZ([—1,—]/2]U[]/271]) +p(=1/4)P + p(1/4)]°

2
L2([-1,—1/4)u[1/4,1])

2
+ 1P 221 —1 a0 ja)

147
=—6<P7P>2-

As a consequence, we have that the operator of multiplication by #* is bounded for

o

P,y = (p. ), < (H) < pp 2 < () <pop)
However, the operator of multiplication by ¢ is not bounded for {, >,: indeed,
taking #,(x) = (x> — 1)", an easy calculation gives

Xty xtyy =1, n=0,

and

2n 2n—2

Ctuntny <G 42(82)"+60% (1)) nz2.

This shows that the operator of multiplication by ¢ is not bounded for <, ).

We now prove that, however, the set of zeros of the orthogonal polynomials p,,,
n>=0, with respect to the Sobolev inner product <, >, is bounded. Indeed, the
symmetry of this Sobolev inner product with respect to the origin shows that p,, is
an even polynomial and p;,.; is odd. As a consequence if a is a zero of p, then so is
—a. If a is a zero of p,, we can then write p,(z) = (> — a*)q, from where it follows
that

0= {pung> = <2q.q>, — {a’q.q) .

Since .4 is bounded for this inner product, we have that

al><q,9>1 = <20, 90| <V {224, 24>, {q.a ), <\ |47 < q. 9>,

from where we get that the zeros are bounded.
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3. Sequentially dominated measures: a matrix approach
We prove in this section the characterization of sequentially dominated measures

given in Proposition 2 (see the Introduction). To do this, we need to introduce the
matrix approach presented in [3] for the location of zeros of Sobolev orthogonal

polynomials.
Let us consider an inner product of the form
payw= /(To(p), s INE) W (2)(To(q)s -, Tn(q))" du(z), (10)
where (i) Ty, ..., T are linear operators in the space P; (i) W (z) is a positive definite

matrix of integrable functions with respect to the positive measure p supported on a
subset of the complex plane.
Here, we will assume that W is a diagonal matrix

W = diag{wq, wy, ..., wn}, wreL'(n), we=0, k=0,1,....N,

and Ty=1, Ty =D, T, =D? ..., Ty = DV, where D/ represents the differential
operator of order j. Therefore, the inner product (10) reduces to the Sobolev inner
product (4).

The main advantage of this matrix approach is that it allows to represent the
multiplication operator in terms of a simple matrix product. Indeed,

(zp, () ..., z22)™) = (0,p', ... P,

where
1 0 0
0 =z 2 0 0

o o0 -
I =

z N
0 0 =z

Since

{zpyzpyw = /(P,P/, ,..,p(N))[FWF*](p,p’, "'7p<N))* du,

we find that the multiplication operator is bounded if and only if there exists >0
such that

/(Pvp’,.--,p‘N))[nW—FWF*](p,p’,---,pw))*du?O, for all peP. (1)

Thus, the following sufficient condition for the boundedness of the multiplication
operator holds: there exists #>0 such that

nW—-TWI*=0, uae. (12)
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However, this is not a necessary condition for the boundedness of the multiplication
operator. Indeed, the inner product <, >, of Example 3 is a counterexample; we have
proved that the operator of multiplication by ¢ is bounded for this inner product. But

(n — 2)wo(t) — wi(2) —tw (1) .
—twy(2) (n — 2wy (?)

if we take re(—1/2,—1/4)u(1/4,1/2), the matrix A(z) reduces to

1 _
A(t) = < (1 _tt2)>

which for any #>0 is not positive semidefinite.
However, the property (12) turns out to be equivalent to the sequential
domination of the measures y;, = wy du, k =0, ..., N, as we prove now.

A(t) =qW —TWT* = (

Proof of Proposition 2. We start by proving that if there exists #>0 such that the
matrix o7 = o/ (n) = nW — TWT™ is positive semidefinite u a.e., then the measures
W =wirdp, k=0, ..., N, which define the Sobolev inner product (4) are sequentially

dominated and supp u = U,Z(V:O supp wy. is a compact set of the complex plane.
It is easy to find the following expression for the matrix o« = nW — T WT™:

w(z)  —PB(z) 0 .. 0
—Bi(z2)  w(z) —Pa(z) O :
0 —Ba(z)  o2(z)  —Ps(2) 0

of = ,
0
IN-1 —Bn(2)
0 0 —By(z)  an(z)
where

(1= zP)wi — G+ 1w, j=0,1,....N—1,
O(/(Z) = 2 .

(= |z1)wn, j=N,

Bi(z) = jzwi(z), j=1,...,N.
Let >0 be such that the matrix .o/ is positive semidefinite u a.e. Then, for all
j=0,1,...,N, in particular it holds o;(z)>0 u a.e. For j= N this gives (y—
lz]*)wn(z) =0, u a.e.; thus, we can assume that the function wy(z) is supported in

{z:]z|<y/m}. Forj=0,...,N — 1, we also have

(1= 12Pywy(2) = G+ 1w ()20, p ae. (13)
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Thus, we also deduce that the functions w;(z),j =0, ..., N — 1, can be supported in

{z: |z|</i1}. Taking now into account that supp u = U;cv:o supp wy, we find that the
support of the measure p is compact.

From (13) we also conclude that u a.e. if w;(z) = 0 then w;;(z) = 0, thus on the
support of u

w1 (2) _(n = |z°)
wi(z) T (j+ 1)

which implies that the measures p, = widu, k=0,...,N, are sequentially
dominated.

In order to prove the converse result, we assume that the measures u;, = wy dy,
k=0, ..., N, which define the Sobolev inner product (4) are sequentially dominated

and supp u = U,ICV:O supp wy. is a compact set of the complex plane. Then we have
that there exists a constant ¢>0 such that for j =0,...,N — 1,

wis1(2) Sew;(2)p ae. (14)
Notice that
C)W () (2)" + T(—2)W(2)[(—z)" = 2diag(T'(z2) W (z)['(2)")

and hence /(n) will be positive semidefinite u a.e. for some # if this is true for
o = ) = nW() - 2diag(PE) W (T ().
For the matrix .oZ, we have the expression

o =diag{wo(n — 2|z|*) — 2w1, s Wi — 2|z
— 20+ 1?wit, oo wn(n =229}, j=0,1,...,N — 1.

Let M be such that suppuc{z: |z|<M}. We can choose n large enough
(independently of z) such that n —2(N%c+ M?)>0 and hence, taking (14) into
account, the matrix .« will be positive semidefinite p a.e. [

As a corollary, it follows from Proposition 2 and (11) that sequential domination
of measures with compact support implies the boundedness of the multiplication
operator, which gives an alternative proof to the result of Lopez—Pijeira in [5,
Theorem 1]:

Corollary 1. Let u be a positive measure with compact support in the complex plane
and consider the Sobolev inner product {, ) defined by (4). If the measures . = wy du,
k=0,...,N, are sequentially dominated then there exists n>0 such that

{zp,zpy <nip,p),peP.
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Appendix

The purpose of this appendix is, for the sake of completeness, to present a
simplified proof of the characterization of the boundedness of the multiplication
operator for Sobolev inner products given by Rodriguez in [6, Theorem 4.1] (see
Proposition 1 in the Introduction of this paper). The proof uses the same arguments
given in [6], which also work for measures having support on the complex plane.

We are going to show that the multiplication operator is bounded if and only if the
norm (5) is equivalent to the norm defined by the matrix

W = diag{wo +wi + - + Wy, w1 +wyp + - +wy, ..., Wy_1 + Wy, Wy},
that is, there exists >0 satisfying

[lzpllw <nllplly,  for all peP (A1)
if and only if there exists a positive constant C such that

Ipllw <llpll; < Cllpllw- (A2)

The first of the previous inequalities is straightforward taking into account the

definition of the matrix W. However, in order to prove the second inequality in (A.2)
we have to show that there exists a constant C >0 such that the following inequality
takes place:

2 2 2 12
C‘”p”W> | ‘p||w1+wz+<-»+nw + ‘|p/||1V2+W3+~--+WN + + ||p<N l)HwN' (A3)
Taking into account Theorem 1, we can omit the hypothesis supp 4 compact and
state the following result:

Theorem A.1. If the multiplication operator M (p(z)) = zp(z) is bounded with respect
to the Sobolev norm (5) then the inequality (A.2) holds.

We point out that the reciprocal assertion in Theorem A.1 is also true assuming

supp p compact: since W is sequentially dominated, according to the Corollary 1 the
multiplication operator is bounded.

Proof. In order to prove Theorem A.1, it remains to show that the inequality (A.3)
holds. For this purpose we will make use of the following.

Lemma A.1. If'||.#|| < oo then for all pe P it holds
1P, < QUL Ipllw,  O<ISj<N. (A.4)
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Proof. Taking into account the definition of the norm in (5) for / = j one obtains the
trivial inequality ||p ’)||w <||pll- Thus, we can assume j>/.
For each 0</<j< N the following inequality takes place:

1Gzp) M1, = 2D + @+ D)p ], = @+ DI, = 122V,
hence,

7+ DO, <22V, + [1(zp) Y (A5)

wj

We proceed by induction. At first, let j — / = 1. Considering (5) one has for each
j=1,..., N the estimations

1z2) V1, <llzpllw <141 - Nlplly VpeP.
On the other hand, taking Theorem 1 into account it holds
120V, <1411 - 11PN, <121 - lpl -

Substituting the previous inequalities in (A.5) one obtains

1PV, < II%II 1y

thus the lemma holds true for this particular case.
We now assume (A.3) holds for j — / = k. We have to prove that

e k

1P~ DI, < A1) Ipl - (A.6)
Indeed, substituting / =j — k — 1 in (A.5) one obtains the inequality

) o - K

G = RIS, <l - 1191, + 1),

The inequality (A.6) follows using the induction hypothesis. [

To complete the proof of (A.3), considering (5) and Lemma A.1, for each [/ =
0,1,...,N — 1 we have the estimation

N
j—1
[ Z P15, < D UL lplly,

j=Il+1 Jj=I+1
hence, it holds
N-1 , N-1 N i ,
/ j—
PO i < D > @Il O
1=0 =0 j=I+1
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